January is Glaucoma Awareness Month

Are You at Risk for Glaucoma?

Here’s a New Year’s resolution that can save your sight: make that call to your eye doctor to schedule an appointment to have your eyes tested.

Anyone, at any age, can develop glaucoma; early detection and continuing treatment are key to preserving your vision. Glaucoma is the leading cause of preventable blindness in the United States and the leading cause of all blindness among African Americans. Yet, half the people who have glaucoma still don’t know it. That means they haven’t had their eyes examined.

While some people are at greater risk for glaucoma, the disease can afflict anyone, from newborn babies to senior citizens. The chances of developing the disease do increase as we get older, with age 45 the statistical point of increased risk, but there are other risk factors that have nothing to do with age.

Ethnic background also has a significant impact. People of African descent are especially at risk. Among African-Americans, glaucoma also occurs earlier in life and more frequently results in blindness. Hispanics are also at greater risk, as are people with certain health conditions, such as diabetes, and those who have experienced a serious eye injury.

Undetected and untreated, glaucoma can lead to blindness. And vision that is lost cannot yet be restored.

“Most people who have glaucoma don’t notice symptoms until they begin to lose some vision,” says Dr. Gregory K. Harmon, TGF Chairman. “That’s why it’s sometimes called the ‘sneak thief of sight.’ But vision loss from glaucoma can usually be prevented if it’s detected and treated in time.” Pointing out that some 120,000 Americans are blind as the result of glaucoma, Dr. Harmon says that the vast majority of these individuals did not have to lose their sight. A simple, painless eye examination can detect the disease.

Research funded by government and by nonprofit organizations like The Glaucoma Foundation is striving to unlock the mysteries of glaucoma and find more effective treatments and, one day, a cure. The first step is to know your risk factors and make an appointment for an eye examination. If you have glaucoma, it is important to work with your doctor on a

continued page 12
Dear Friends:

January is Glaucoma Awareness Month, when we focus on the importance of early detection and urge everyone to have their eyes examined. We hope you will wear a green ribbon to spread that sight-saving message!

We’ve just concluded the busiest season on TGF’s calendar, with our Think Tank in September followed by the 20th Black and White Ball, our annual fundraising gala. It was a stellar evening — 360 guests helped raise $700,000 for the important work ahead.

In planning our annual research event, the collaborative International Think Tank, we involve clinician-researchers in glaucoma, researchers working in other areas of the eye, and scientists working outside the field. As always, the goal is to cross-fertilize and to identify important areas for future research and funding. We also hope the Think Tank fosters new relationships among our attendees that will lead to continued communication across disciplines and between laboratories – long after the meeting has ended.

Previous Think Tanks have opened up new research directions in the field and attracted some of today’s leading researchers who had not worked in the glaucoma area before.

I am especially pleased that three participants at the 2006 Think Tank are the newest members of TGF’s Scientific Advisory Board. They are: Rutledge Ellis-Behnke, Ph.D., a member of the department of Brain and Cognitive Science from MIT; James Leary, Ph.D., a biomedical engineer at Purdue University; and Carlo Montemagno, Ph.D, Dean of the College of Engineering at the University of Cincinnati.

The Scientific Advisory Board plays an important role in the selection process for TGF funded research grants. The academic specialties of these three new SAB members underscores the fact that The Glaucoma Foundation is at the cutting edge of new research and continues to play an active role in charting the course for future glaucoma research.

These are pioneering times in the field of glaucoma research and exciting times for The Glaucoma Foundation. This year TGF awarded more research grants than in any previous year. Our local chapters now number four; our online network has provided support for untold numbers of people with glaucoma worldwide. Thanks to the financial support of friends like you, we are able to be a catalyst for progress as we continue to educate the public about glaucoma and work toward eliminating blindness from this insidious disease.

Please continue your valuable support of TGF. As we begin this New Year, we are counting on your generosity.

Sincerely,

Scott R. Christensen/President and CEO
Are there any foods I should be eating in terms of my eye health?

As suggested by any physician, nutrition in moderation is the key to success! There are no foods or drinks that have a known beneficial effect on glaucoma. However, it has been suggested that foods rich in lutein and zeaxanthin may be the most effective in protecting the health of the eye. Foods high in lutein are egg yolk, kale, spinach, broccoli, corn, and peas. Zeaxanthin is found in many of the same foods as lutein, but foods such as orange juice, oranges, and corn contain more zeaxanthin than lutein.

Furthermore, there are anecdotal (and unconfirmed) reports that excessive caffeine intake may, in some patients, cause mild to moderate elevations in IOP.

Individuals with a high intake of omega-3 fatty acids appear to have a lower incidence of certain eye diseases. It has been suggested that fish oil may reduce IOP and be relevant to glaucoma because of its protective effect on the macula. Good sources of omega-3 are cold-water fish such as salmon, cod and mackerel, black current seed oil and flaxseed oil.

Lastly, an early study suggested that people who drank wine in moderation might be less likely to develop age-related macular degeneration. Wine may be beneficial. Some physicians believe that Resveratrol, an ingredient in red wine (especially pinot noir and burgundy), may confer some beneficial ocular effects.

Can I wear contact lenses if I have glaucoma? Will the re-wetting drops affect my IOP or glaucoma medications?

The wearing of contact lenses in patients with glaucoma is a frequently asked question. If a patient has not had any glaucoma surgery, then he/she will likely be able to use contact lenses without any deleterious effects. However, following most glaucoma incisional surgeries, patients are often asked to avoid using contact lenses if possible (one reason: to avoid increased risk of bleb infection).

The use of re-wetting drops should be spaced at least 5-10 minutes after the use of glaucoma medications so as to avoid “washing out” of the medications’ beneficial IOP effect.

Adapted from: http://www.mayoclinic.com/health/glaucoma/AN01339
With its spotlight on innovational applications of micro-and nanotechnologies for major unsolved problems in glaucoma, The Glaucoma Foundation’s 2006 International Scientific Think Tank continued to focus on 21st century technologies that can play a role in better understanding and treating the disease.

The annual Think Tank fosters creative thought and collaboration among the world’s leading glaucoma experts, neuroscientists, geneticists, biomedical engineers, nanoscientists and other specialists, providing a unique opportunity for scientists to apply the research and progress in other diseases and systems to the challenges of glaucoma. In September, the interdisciplinary gathering attracted close to 50 participants working in the academic, medical, scientific and corporate arenas in the U.S., Canada, Taiwan, Germany and Italy.

Glaucoma, a disease of the optic nerve, is actually the end result of a variety of diseases. While many questions still remain for study, there is a growing body of research in progress about how the disease advances and what factors may impact it – knowledge that can lead to new treatments and hopefully the eventual eradication of blindness from glaucoma.

At the September Think Tank, clinicians focused upon the most important known risk factor for the development and progression of glaucomatous damage -- intraocular pressure (IOP). Specifically, the participating clinicians challenged nanoscientists at the meeting to apply their engineering and biomedical expertise to finding a better way to measure intraocular pressure.

IOP is not a common factor in all glaucomas -- for example, it is not elevated in normal-tension glaucoma. But IOP is the current gold standard for measuring glaucoma and it remains at the core of the profession's diagnosis and treatment of the disease. “It’s what we know, it’s what we treat,” said Think Tank participant Dr. Paul Kaufman of the University of Wisconsin-Madison. “We need to find a way to continually measure IOP if we are to understand how IOP works and better handle the disease.”

Currently, pressure measurements are taken in the doctor’s office, not necessarily at the same time of the day. “They reflect a single point in time, rather than a continuous measurement, and that doesn’t tell us enough about how
pressure impacts the disease,” says Dr. Robert Ritch, Chair of the Think Tank and Medical Director of The Glaucoma Foundation, who urged the engineers to work with biologists to come up with a viable solution.

Several Think Tank papers shed light on projects in the research pipeline for new devices that could provide continuous monitoring of IOP. But these future micro and nano-scale devices are not available for clinical use. (To give some idea of what nano-scale involves, a single human hair measures about 80,000 nanometers in width!)

According to a presentation by Think Tank participant Georg Michelson, Ph.D., who attended the meeting from Erlangen, Germany, concepts at the early stage of research include a silicone intraocular lens with a completely encapsulated IOP sensor, a neurosurgical micro sensor implanted in the anterior chamber of the eye, and a sensing contact lens with an embedded microfabricated gauge allowing the measurement of changes in corneal curvature correlated to IOP variations.

Many of the ideas on the scientific drawing board involve surgically implantable devices. “Ideally,” said Dr. Ritch, “the goal should be to keep the device simple and non-invasive so a general practicing ophthalmologist could use it, for example, a sensing contact lens which would have a nominal impact on the patient’s normal life.”

Among factors that could present hurdles are the effect of light and eye movement, the power source and biocompatibility. Among other issues discussed: how to collect the data and present it in such a way to be understandable to physicians, and whether to integrate data other than IOP measurements. These might include the patient’s physical position, ocular blood flow, change in the size of the optic nerve, metabolic changes in retinal ganglion cells and other factors fundamental to the disease.

“In the short term,” said Dr. Kaufman, “the need is for a device to monitor IOP to help patients medicate effectively and to monitor whether patients are compliant. In the longer term, if instrumentation allows it, the need is for monitoring to see how IOP correlates to other factors.”

“The cross-fertilization among disciplines that has been the hallmark of our Think Tank continues to further advances in the field,” said Dr. Ritch at the Think Tank’s conclusion. “By asking experts in other fields and other diseases to focus on our problems in glaucoma, I know we can arrive at solutions faster.” Dr. Ritch expressed his hope that the very dynamic two-day meeting had inspired the scientists to work on the challenges presented at this 13th Annual Think Tank.
Fall 2006

Jeffrey L. Goldberg, MD, PhD
Assistant Professor, Ophthalmology
Bascom Palmer Eye Institute,
University of Miami, FL

Developmental Determinants of Retinal Ganglion Cell Regenerative Ability

In glaucoma, axons of mature retinal ganglion cells (RGC) do not regenerate in the optic nerve. The vast majority of regenerative research has focused on identifying extrinsic glial-associated inhibitors of regeneration. This has been fruitful, yet overcoming the inhibitory environment leads to only a small fraction of regenerative response. In this proposal Dr. Goldberg will continue to investigate the molecular basis for the developmental loss of intrinsic axon growth ability in RGC in vitro and in vivo, screening developmentally-regulated RGC genes for an ability to improve axon growth. This approach has the opportunity to open a conceptual breakthrough into the failure of RGC regeneration, and to lead to entirely new molecular insights and thus to new strategies to “revert” mature RGC to their greater embryonic axon growth ability.

Nadean L. Brown, PhD
Assistant Professor, Developmental Biology and Pediatric Ophthalmology
Children’s Hospital Research Foundation,
Cincinnati, OH

In Vivo Investigation of Optic Nerve Formation and Connectivity within the Mouse Brain

The goal of this project is to understand how retinal neurons grow out of the mammalian eye, assemble into functional nerves and establish the correct connections with the brain. Each of these steps is essential for the images an eye sees to be properly interpreted by the brain. To accomplish this, the researchers created a transgenic mouse model in which the developing optic nerve is labeled in living mouse embryos. This project will place the growing retina from these embryos in culture, by itself, or with the appropriate brain tissues and study optic nerve formation. Using this system, the project will test the ability of the factor oncomodulin, which stimulates adult optic nerve regeneration, to direct embryonic optic nerve formation. It will also test the ability of oncomodulin to restore mutant optic neuron outgrowth in the brain. These studies will provide crucial information about the requirements for initially creating the optic nerve versus regenerating it.

Don S. Minckler, MD, MS
Professor of Ophthalmology, Director of Glaucoma Services
University of California, Irvine

Three Dimensional Reconstruction of the Lamina Cribrosa Using Second Harmonic Imaging Microscopy

Advancing age and increasing intraocular pressure (IOP) are risk factors for progression of glaucoma. Experimental studies have demonstrated that the initial injury in glaucoma is in the lamina cribrosa or scleral portion of the optic nerve head where nerve cells from the retina form the optic nerve and ascend toward the brain. Though numerous studies have examined the lamina cribrosa, detailed knowledge as to the effects of IOP on its organization and structure are very limited. This project will use a new technology to visualize the
three-dimensional structure of the lamina cribrosa at a very high resolution using non-invasive second harmonic imaging microscopy (SHIM). This technique allows for direct measurement of the structural changes in the lamina caused by IOP that avoid many of the problems and artifacts of past methods. This data should provide critically important insights as to how IOP causes vision damage.

Valery Shestopalov, PhD
Assistant Professor, Department of Ophthalmology, Anatomy and Cell Biology
Bascom Palmer Eye Institute, University of Miami, FL

The Role of Glial NF-kappaB in Retinal Ganglion Cell Loss in Glaucoma

This project will investigate the effect of the cellular environment, specifically the neural glia, on the survival of RGC. The death of these neurons, which communicates visual information to the brain, causes blindness in glaucoma. Utilizing a transgenic mouse strain possessing genetically inactivated nuclear factor-kappaB (NF-kb), this research will test the hypothesis that NF-kB plays a key role in converting the normally supportive neuronal environment into a noxious, reactive one. The mouse strain will allow the researchers to examine whether the genetic inactivation of this complex will protect these neurons. Comparing neuronal death rates in normal and transgenic mice will determine the effect of NF-kB activation directly in animal retinas. This knowledge may provide novel targets for both prevention and molecular therapy of glaucoma.

Spring 2006

Robert O. Duncan, PhD
Assistant Project Scientist, Hamilton Glaucoma Center
University of California, San Diego

Functional Magnetic Resonance Imaging (fMRI) of Function – Specific Vision Loss in Glaucoma

If left untreated, glaucoma eventually results in the death of cells in the eye that relay visual information to the brain. Animal studies have shown that the loss of these cells, in turn, has detrimental consequences for the cells in the brain. There are three primary pathways that relay different aspects of the visual scene from the eye to the brain: the magnocellular, the parvocellular, and the koniocellular pathways. This study aims to determine if any of the three primary visual pathways is affected differentially by glaucoma. Functional magnetic resonance imaging (fMRI) will be used to compare cortical responses to visual stimuli that differentially stimulate one of these three pathways. The experiments should demonstrate which, if any, of these functionally distinct neural pathways is most affected by human glaucoma. Understanding how the visual pathway from the optic nerve to the brain is affected by glaucoma will provide insights into the pathology of the disease, which may guide future research for neuroprotective, genetic, and molecular therapies.

Barbara Grimpe, PhD
Instructor, Neurological Surgery, The Miami Project to Cure Paralysis
University of Miami, FL

CD44-Osteopontin Interaction in Axonal Outgrowth of Retinal Ganglion Neurons

Progressive irreversible blinding diseases collectively called glaucoma cause damage to the optic nerve. To design strategies to rescue the injured nerve, it is necessary to understand the underlying processes in nerve growth. Therefore, it is essential to identify proteins that are involved in axonal growth of retinal ganglion cells (RGCs) during development as well as in the mature central nervous system (CNS). The laboratory uses a completely new approach that involves the design of a computer program suite collecting protein names from literature relevant to “nerve regenerations.” They have identified two proteins that interact with each other that have never been investigated regarding their importance in axonal outgrowth of RGCs and were able to demonstrate the role of these two proteins in neurite growth of embryonic RGCs. Further experiments will investigate the expression pattern of these two proteins in embryonic as well as mature brains. They will also use genetically modified mice, so-called knock-out mice, to perform additional studies on
the biological function of these proteins in the visual system.

Linda K. McLoon, PhD
Professor, Ophthalmology and Neuroscience
University of Minnesota, Minneapolis, MN

Intranasal Application of Neuroprotective Agents in Rats with Glaucoma

There is evidence to suggest that disruption of the blood flow to the retina and optic nerve in patients with glaucoma may in part explain the loss of the cells of the retina in these patients. The researchers have characterized a model of retinal and optic nerve injury that is caused by hypoxia to these tissues, which is loss of oxygen due to temporary disruption of the blood supply. They will test a novel method of drug administration, intranasal application, to determine whether this method of treatment can rescue the retinal cells and optic nerve axons that had been exposed to a short-lived disruption of blood flow resulting in ischemia. They will examine the potential efficacy of insulin growth factor-1, a hormone known with neuroprotective effects in stroke, retinal and spinal cord injury, but whose systemic side effects from high doses are not acceptable for patient use. The study will also test erythropoietin, another neuroprotective candidate molecule. Intranasal drug application results in higher effective doses to the tissues of the nervous system than systemic applications.

Andrei Surguchov, PhD
Research Associate Professor, Neurology
Kansas University Medical Center, Kansas City, MO

New Mechanism of MMP-9 Regulation and Its Role in Glaucoma

Metalloproteinase-9 (MMP-9) is an enzyme that is implicated in retinal damage and alterations in the optic nerve in glaucoma. Despite the important functions of MMP-9 in glaucoma, its role in pathology is not completely understood. Recent data suggests that defects in MMP-9 production leading to its excessive accumulation may be a key step in glaucoma and probably other eye diseases. In previous studies, the

Douglas E. Vollrath, MD, PhD
Associate Professor, Genetics, Ophthalmology
Stanford University School of Medicine, Stanford, CA

Chemical Genetic Screen for Compounds that Enhance Secretion of Mutant Myocilin

This project investigates an inherited form of glaucoma that affects thousands of Americans. Unlike more common forms of glaucoma, the mutant gene that causes this disorder is known. The study’s goal is to understand how the mutant protein encoded by the gene causes the disease, and by solving this tractable problem, to gain insight into some of the causes of the more common forms of glaucoma. Current results show that the mutant protein has an abnormal shape and is not properly released from cells. When cells derived from the front of the eye make the mutant protein, they become sick and die. These particular cells are known to be important in draining fluid from the eye, so their loss could well explain how the mutant gene/protein causes glaucoma. When these cells are grown at temperatures slightly below body temperature, the mutant protein is released from the cells and the cells no longer die. The research team proposes to find drugs that stimulate release of the mutant protein from cells at body temperature and hopes that identification of such compounds will lead to development of new forms of therapy for this type of glaucoma and encourage similar investigations into other forms of glaucoma.
A Night to Remember

360 guests were on hand at the festive and elegant Black & White Ball on December 6, which raised $700,000 to help TGF “Travel Toward a Cure,” the gala’s theme this year.

With Master of Ceremonies Dave Price of CBS-TV at the helm, The Foundation saluted American Airlines with its Corporate Visionary Award. The award, which recognized American’s continued commitment in support of Foundation programs, was accepted by Chuck Imhof, American’s Managing Director for Greater New York and a member of TGF’s Board since 1998.

Actress Kitty Carlisle Hart was on hand to present the Kitty Carlisle Hart Award of Merit for Lifetime Achievement to country music legend Ronnie Milsap. Blind since birth, his courageous life and musical accomplishments have inspired audiences for over three decades. The evening’s program concluded with a standing ovation for Ms. Hart, as she sang “Always,” and all the guests chimed in.

Our deepest appreciation for the flagship support of American Airlines and the other individuals and organizations at the highest level of ongoing generosity: Alcon Laboratories, Mr. & Mrs. Joseph M. La Motta, Martin R. Lewis and Diane C. Brandt, and Pfizer Inc. TGF also wishes to recognize the support of: Allergan, Inc., Joseph M. Cohen, Peter and Gretchen Crowley, The Louise and Gerald Kaiser Family Foundation, and Linda and Kenneth Mortenson.
Daytime IOP May Rise Sharply at Night
As the result of recent studies suggesting that intraocular eye pressure (IOP) may rise when the patient is in bed at night, ophthalmologists now believe that the traditional tests of IOP taken during an office visit may not be an accurate measurement of eye pressure.

In February, Japanese researchers made public their findings of a study of 148 patients with untreated primary open-angle glaucoma and IOP of less than 21 mm Hg. They found that 20 percent of the participants had pressures higher than 21 mm Hg while sleeping at night. The investigators measured IOP 12 times over the course of 24 hours, including every three hours at night.

Other researchers have arrived at the same conclusion. John H.K. Liu, PhD and Robert N. Weinreb, MD, both of the University of California, San Diego, have been studying nighttime eye pressure in glaucoma patients, glaucoma suspects and individuals with high eye pressure who have not developed glaucoma. “Perhaps,” says Dr. Liu, “the nighttime eye pressure, not the office eye pressure, is a better indicator for evaluating the risk for glaucoma.” Their research has also found that various glaucoma medications show different potencies at nighttime in lowering eye pressure.

As high IOP is recognized as perhaps the most important risk factor for the development of open angle glaucoma and its progression, this important new information can help doctors better diagnose and treat glaucoma. For example, when a patient has progressive visual field loss with apparent well-controlled intraocular pressure during the diurnal/awake period, it may be appropriate to consider the possibility that the nocturnal/nighttime IOP is elevated.

Clinical Trials in Glaucoma are Ongoing
The Glaucoma Foundation regularly receives calls seeking information about clinical trials and asking whether TGF conducts such medical research.

While The Foundation awards research grants, it does not sponsor clinical research – studies in human volunteers conducted to answer specific health questions. Ideas for clinical trials usually come from researchers after they have tested new therapies or procedures in the laboratory and in animal studies. Among major sponsors and funders of clinical trials are the National Institutes of Health and other Federal agencies, medical institutions and pharmaceutical companies.

All trials have guidelines about who can participate, based on criteria that help ensure the researchers will be able to answer the questions they plan to study. Different types of clinical trials include treatment trials, prevention trials, diagnostic trials, screening trials and quality of life trials.

For detailed information on what people should consider before participating in a trial, the risks and potential side effects, the types of clinical trials, protocols and phases of clinical trials, readers can go online to: www.clinicaltrials.gov – a service of the U.S. National Institutes of Health.

On that site, a search of glaucoma trials that are currently recruiting or not yet recruiting applicants recently brought some 80 entries from around the U.S. Choosing to participate in a clinical trial is an important personal decision. Clinical trials that are well-designed and well-executed are the best approach for eligible participants to play a more active role in their own health care, gain access to new research treatments before they are widely available, and help others by contributing to medical research. It is suggested that interested parties talk to their physician, to family members or friends about the decision to join a trial. After identifying some trial options, the next step is to contact the study research staff and ask questions about specific trials.
Create a Lasting Legacy

The Glaucoma Foundation has been privileged to be the recipient of bequests from friends as well as other individuals throughout the country. Many of these donors were not previously known to The Foundation, but shared our goal of eradicating blindness from glaucoma and sought out The Foundation as a means to support that vision.

We invite you to join the growing roster of individuals who have made a lasting contribution. Your support through a testamentary gift will help us fund cutting edge innovative research that can lead to new treatments and a cure for glaucoma. It may also benefit your individual situation. This Gift will also help us further our mission of reaching out to and educating the public about the need to detect the disease early and about new developments in the field.

If you wish to perpetuate your support, please consider:

- Naming The Glaucoma Foundation as a beneficiary in your existing Will. You can arrange an outright bequest to The Foundation in several ways: as a specific dollar amount, a percentage of your estate, a specific property, or a residuary amount of your estate.

- Designating The Foundation as a beneficiary of your retirement plan (401(k), IRA, Keough Plan, etc.). Even with the eventual elimination of the estate tax, it will still be advantageous to make testamentary charitable gifts from qualified retired plans. Using these assets for testamentary gifts may free up other, less heavily taxed assets, for your heirs.

- Establishing a Charitable Annuity. This arrangement allows you and your spouse to receive income each year for life, and make a charitable gift at the survivor’s death – a mutually beneficial gift arrangement. Additionally, you will receive a charitable income tax deduction in the year of the gift, to the extent provided by law, and pay no capital gains tax when you give appreciated property.

- Naming The Foundation as beneficiary of an existing life insurance policy. You can give a policy no longer needed for its original purpose – for example, bought to protect children now independent. By naming TGF as a beneficiary for all or a portion of an existing policy, you retain ownership and still have access to the policy’s cash value. Tax savings may be realized through effectively planning life insurance gifts.

Your professional advisor can help you weigh the benefits of various methods of giving. To let us know of your intent to include The Glaucoma Foundation in your estate plan, or to discuss other gift options, please contact us by phone at 212.285.0080.
A copy of The Glaucoma Foundation’s annual financial report may be obtained upon request by writing to The Foundation at 80 Maiden Lane, Suite 1206, New York, NY 10038 or by residents of the states listed below from the appropriate state agency. Florida: A copy of the official registration and financial information may be obtained from the Division of Consumer Services by calling toll-free within the State. Registration Number - CH3753. Registration does not imply endorsement, approval, or recommendation by the State. Maryland: Information filed under the Maryland Charitable Organizations Laws can be obtained for the cost of postage and copies from the Office of the Maryland Secretary of State, Statehouse, Annapolis, MD 21401, or by calling 410-897-5534. Michigan: Secretary of State’s Office, Charities Registration, PO Box 136, Jackson, MI 49205-0136, 610-969-1633. New Jersey: Information filed with the Attorney General concerning this charitable solicitation may be obtained from the Attorney General of the State of New Jersey by calling 212-574-6215. Registration with the Attorney General does not imply endorsement. New York: A copy of the last annual report filed may be obtained upon request in writing to the Office of the Attorney General, Department of Law, Nassau County Bar Association, 120 Broadway, New York, NY 10271, North Carolina: A copy of the license to solicit charitable contributions as a charitable organization or sponsor and financial information may be obtained from the Department of Human Resources, Education Licensing Branch, by calling 919-733-4510. Registration does not imply endorsement, approval, or recommendation by the State. Pennsylvania: The official registration and financial information of The Glaucoma Foundation may be obtained from the Pennsylvania Department of State by calling toll free, within Pennsylvania, 1-800-332-4483. Registration does not imply endorsement. Virginia: Official registration and financial information of The Glaucoma Foundation may be obtained from the State Division of Consumer Affairs, Department of Agriculture & Consumer Services, P.O. Box 1163, Richmond, VA 23209. Washington: Registration and financial report information may be obtained from the Charities Division, Office of the Secretary of State of Washington, Olympia, WA 98504-4922 or by calling 1-800-332-4483. West Virginia: West Virginia residents may obtain a summary of the registration and financial documents from the Secretary of State, State Capitol, Charleston, WV 25305. Registration does not imply endorsement.

The Glaucoma Foundation currently has chapters in Dallas, Chicago, Long Island and New England. If you are interested in starting a chapter in your area, please contact TGF at: 212-651-2509.

Glaucoma Awareness continued from page 1
treatment plan that offers the best chance of preserving your vision. Forming a trusting relationship with a competent doctor, following a prescribed treatment plan, and keeping regular appointments all help to retain vision.

That’s the all-important message of our Glaucoma Awareness Edition.